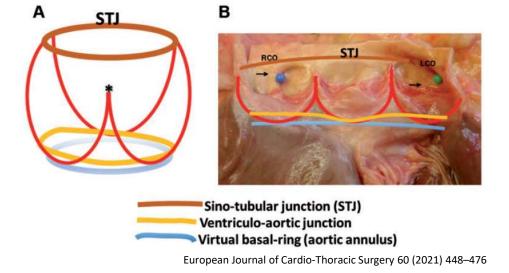
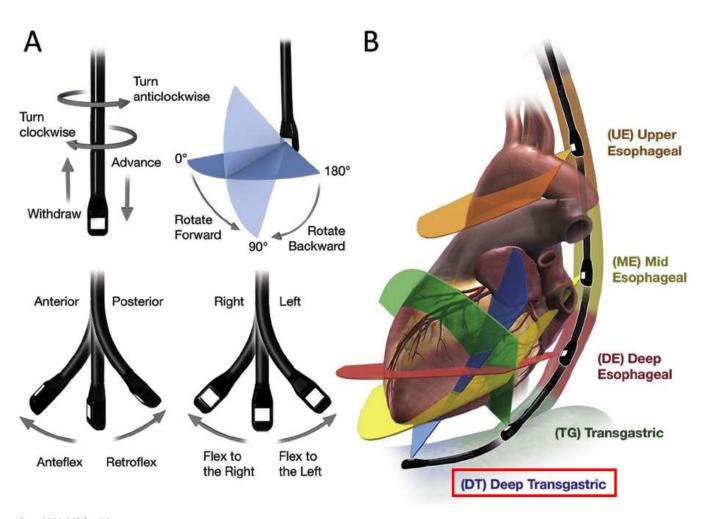

Aortenklappe


Dr. med. Andreas Niedeggen

- ✓ Anatomie
- ✓ Darstellung im TEE (Schnittebene)
- ✓ Morphologie
- ✓ Dimensionen
- ✓ Klappenveränderungen/Vitien
 - ✓ Aortenstenose
 - ✓ Aorteninsuffizienz



- ✓ Anatomie
- ✓ Darstellung im TEE (Schnittebene)
- ✓ Morphologie
- ✓ Dimensionen
- ✓ Klappenveränderungen/Vitien
 - ✓ Aortenstenose
 - ✓ Aorteninsuffizienz

Transducer Angle: ~ 0 - 20° Level: Transgastric

Left ventricle Left ventricular outflow tract Right ventricle Aortic valve Aortic root Mitral Valve

Transducer Angle: ~ 120 - 140° Level: Transgastric

Left ventricle Left ventricular outflow tract Right ventricle Aortic valve Aortic root Mitral valve

Transducer Angle: ~ 120 - 140° Level: Mid-esophageal

Left atrium LVOT RVOT Mitral valve (A₂- P₂) Aortic valve Proximal ascending aorta

Transducer Angle: ~ 0 - 10° Level: Mid-esophageal

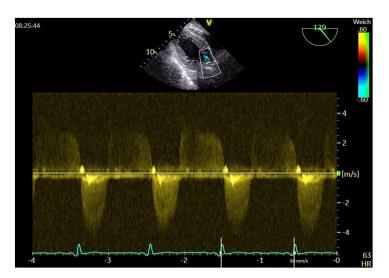
Aortic valve
LVOT
Left atrium/Right atrium
Left ventricle/Right
ventricle/IVS
Mitral valve (A,A,-P,)
Tricuspid valve

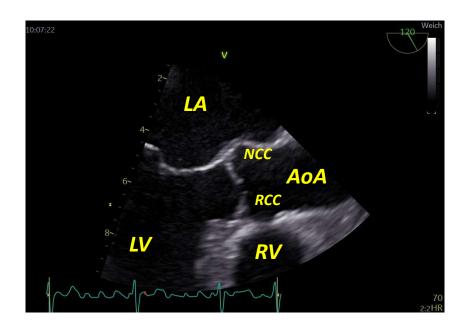
Transducer Angle: ~ 25 - 45° Level: Mid-esophageal

Aortic valve
Right atrium
Left atrium
Superior IAS
RVOT
Pulmonary Valve

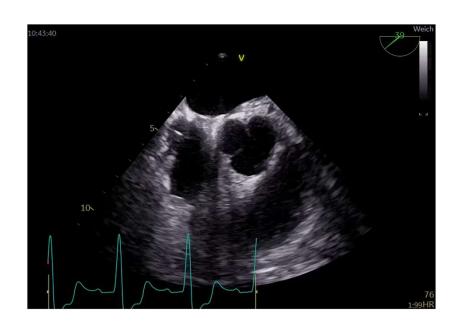
Transducer Angle: ~ 50 - 70° Level: Mid-esophageal

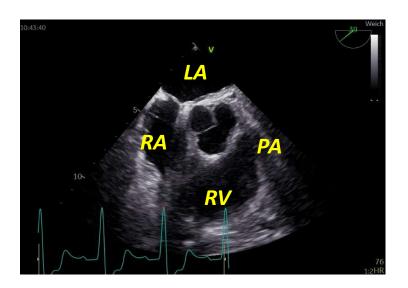
Aortic valve
Right atrium
Left atrium
Superior IAS
Tricuspid Valve
RVOT
Pulmonary Valve


Transgastrisches Fenster 120-140°

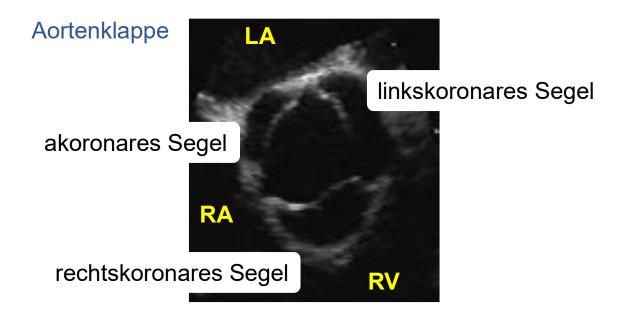


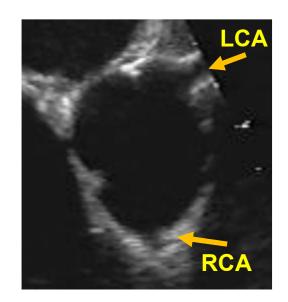
Mittleres transösophageales Fenster 120-140°


LV, LVOT, Mitral- und Aortenklappe, Aortenwurzel

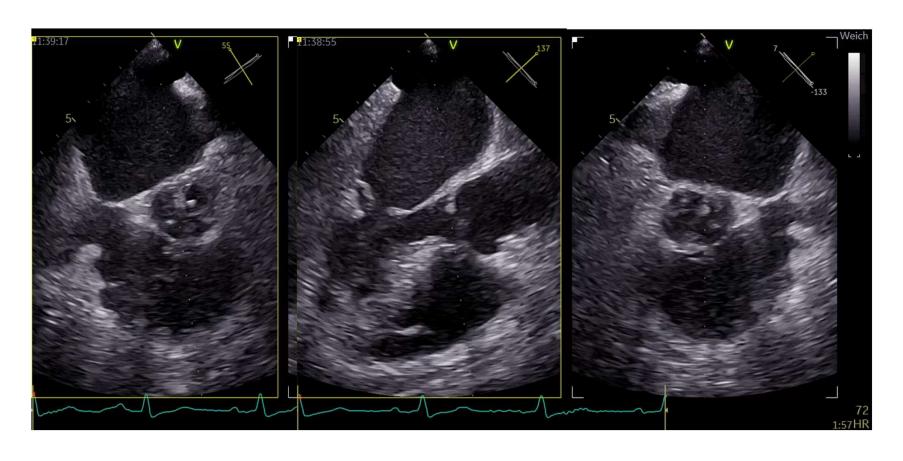


Mittleres transösophageales Fenster (SAX) 25-45°

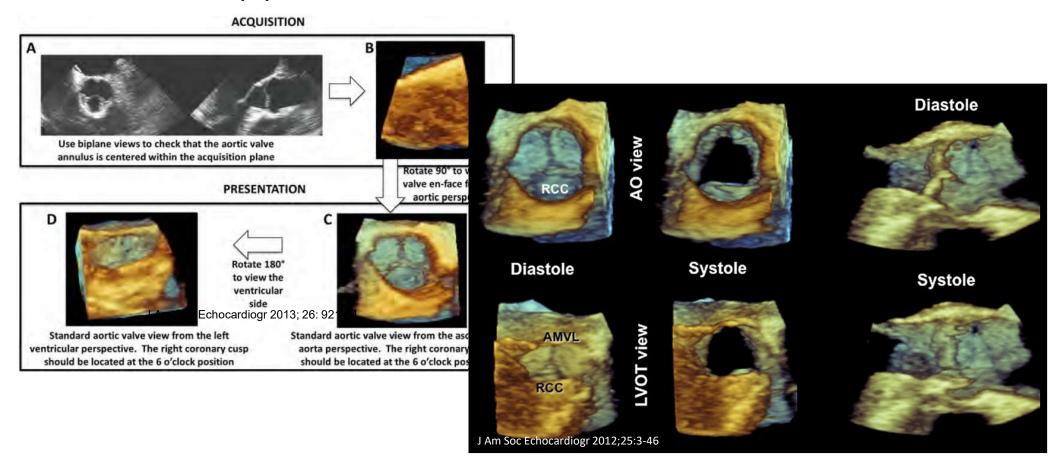

Aortenklappe, Interatr. Septum, RA, Trikuspidalklappe, LAA, RVOT, Pulmonalklappe



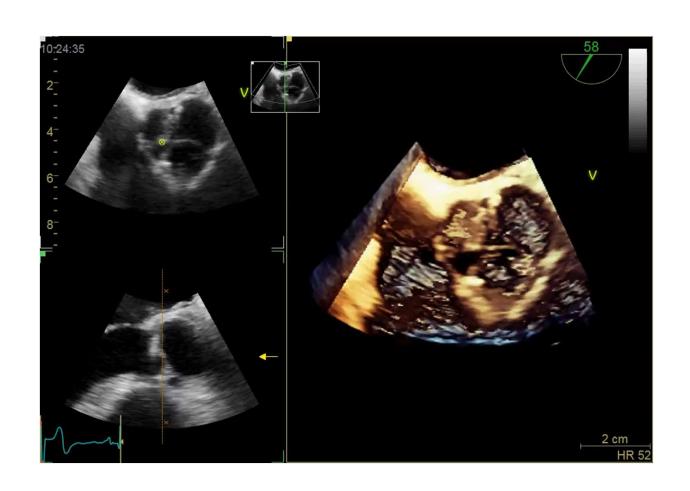
Aortenklappe SAX 25-45°



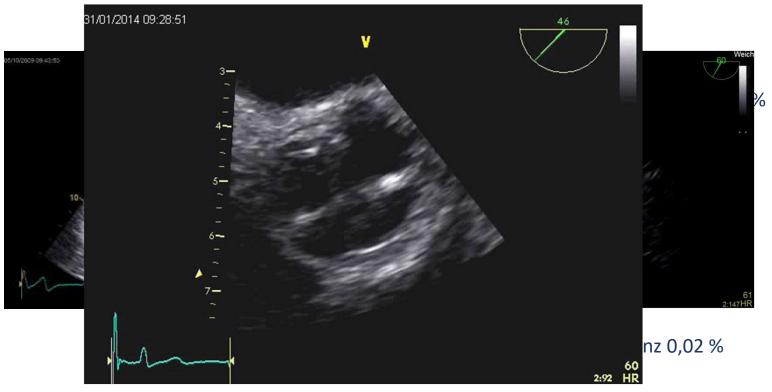
Koronarostien



Aortenklappe- biplane Darstellung

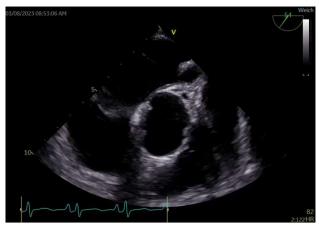


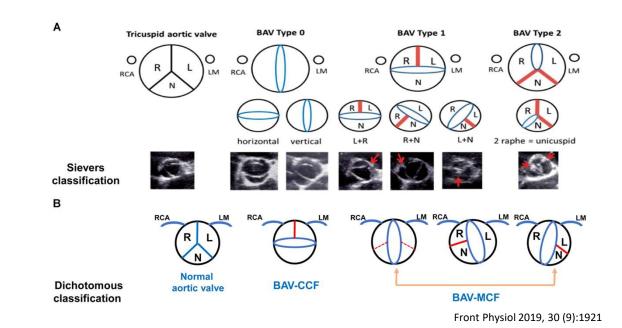
Aortenklappe 3D



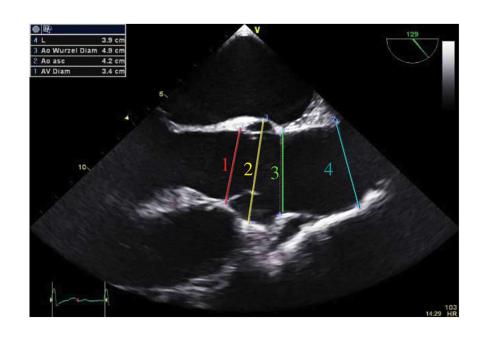
- ✓ Anatomie
- ✓ Darstellung im TEE (Schnittebene)
- ✓ Morphologie
- ✓ Dimensionen
- ✓ Klappenveränderungen/Vitien
 - ✓ Aortenstenose
 - ✓ Aorteninsuffizienz

Aortenklappe – Morphologie Anzahl der Taschen und Taschenkonfiguration



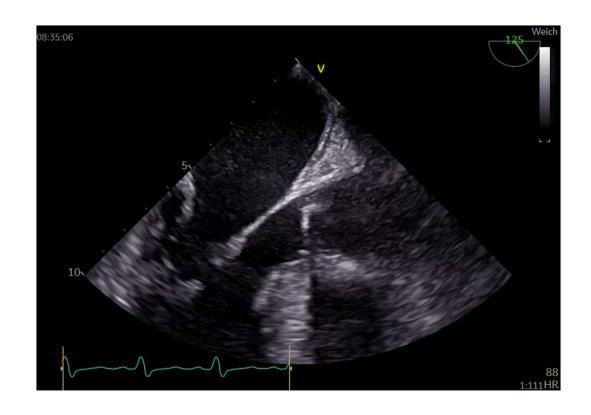

Venkata Thota and Farouk Mookadam (2011). Unicuspid Aortic Valve, Aortic Valve, Prof. Chen Ying-Fu (Ed.), ISBN: 978-953-307-561-7, InTech, Available from: http://www.intechopen.com/books/aortic-valve/unicuspid- aortic-valve

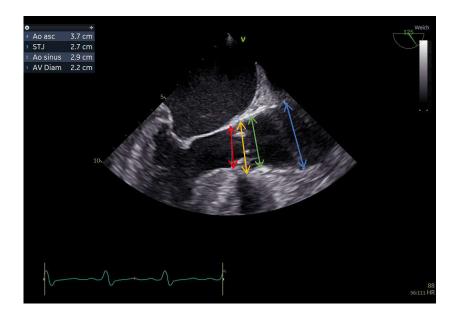
Bikuspide Aortenklappe



- ✓ Anatomie
- ✓ Darstellung im TEE (Schnittebene)
- ✓ Morphologie
- ✓ Dimensionen
- ✓ Klappenveränderungen/Vitien
 - ✓ Aortenstenose
 - ✓ Aorteninsuffizienz

Bestimmung des Aorten-Diameter




Normwerte [JASE 2022 ; 35(3): 267–274]							
	Männer		Frauen				
		BSA		BSA			
Aortenanulus	21.2 ± 2.2	11.3 ± 1.3	19.5 ± 2.1	11.9 ± 1.4			
Aortensinus	32.2 ± 3.7	17.2 ± 2.5	29.3 ± 3.6	18.0 ± 2.6			
STJ	27.7 ± 3.7	14.8 ± 2.3	25.5 ± 3.3	15.6 ± 2.4			
prox. Aorta asc.	29.3 ± 3.1	17.9 ± 2.7	27.1 ± 3.1	17.0 ± 2.1			

European Heart Journal - Cardiovascular Imaging 2013; 14, 611-644

- 1. Aortenanulus
- 3. sinutubulärer Übergang
- 2. Aortensinus
- 4. proximale Aorta ascendens

- ✓ Anatomie
- ✓ Darstellung im TEE (Schnittebene)
- ✓ Morphologie
- ✓ Dimensionen
- ✓ Klappenveränderungen/Vitien
 - ✓ Aortenstenose
 - ✓ Aorteninsuffizienz

Klappenveränderungen / Aortenvitien

Degenerativ

- Sklerose
- Kalzifikation

Rheumatisch

• Verklebung nach Streptokokken-Infekt

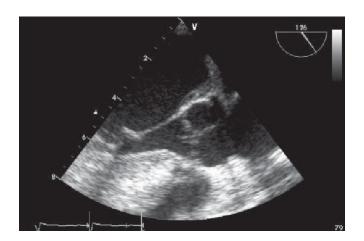
Infektiöse Endokarditis

• Direkte Schädigung durch Bakterien

Krankheiten des Herzmuskels/Aorta mit sekundärem Klappenfehler

• Beeinträchtigung der Klappenaufhängung, z.B. Herzinfarkt, Aortenaneurysma

Degenerative Veränderungen

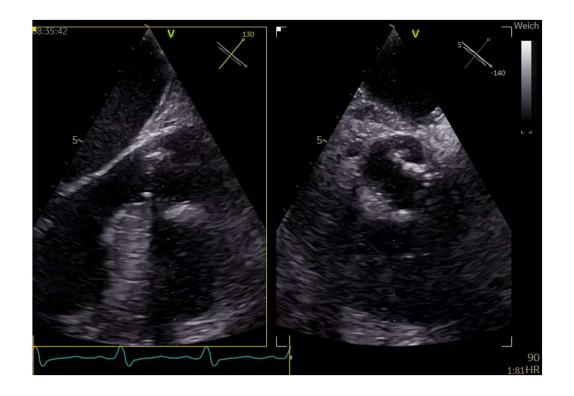

Lambl Exkreszenzen


- stromabwärts den Taschen angeheftete, flottierende bis zu 5 Millimeter lange, sehr dünne fadenförmige Struktur
- Inzidenz bis 5,5%
- Embolisieren nur gelegentlich bei "Giant Lambl Exkreszenz" (Einzelfallberichte)

Cerebrovasc Dis 2015;40:18-27

Degenerative Veränderungen

Aortenklappensklerose


• Prävalenz:

35-44 J. 7% 75-84 J. 65%

• Pathogenese:

ähnlich wie Atherosklerose (Lipideinlagerung, Inflammation und Kalzifizierung)

• Charakteristisch sind noduläre Verkalkung und Verdickungen der Taschen

Rheumatische Veränderungen

Rheumatische postinflammatorische Läsionen

- verdickte, fibrotische, geschrumpfte Taschen, in der Regel mit Verschmelzung der Kommissuren
- Prävalenz 10-15:1.000 in endemischen Ländern

Endokarditis

Prävalenz von Aortenvitien

OxVALVE Population Cohort Study

	None/trivial	Mild	Significant (moderate/severe	
Any VHD	1231 (49.2%)	1110 (44.4%)	159 (6.4%)	
Left-sided VHD				
Mitral regurgitation	1948 (77.9%)	494 (19.8%)	58 (2.3%)	
Mitral stenosis	2491 (99.6%)	7 (0.3%)	2 (0.1%)	
Aortic regurgitation	2118 (84.7%)	341 (13.6%)	41 (1.6%)	
Calcific aortic valve disease—AoScl and stenosis	1617 (64.7%)	866 (34.6%) ^a	17 (0.7%)	
	None/Trivial/Mild	Significant (mode	erate/severe)	
Right-sided VHD				
Tricuspid regurgitation	2433 (97.3%)	67 (2.7%)		
Pulmonary regurgitation	2493 (99.7%)	7 (0.3%)		

European Heart Journal (2016) 37, 3515–3522

Heart of New Ulm (HONU Valve)

- Prospetive, population cohort of 928 commnity volunteers without VHD, who received echocariogram screening (02/2019-12/2021)
- Median age 74 yrs (IQR: 64-79), 99% Caucasian
- Significant VHD present in 16% predominantly regurgitationlesion (AR 4,5%, MR 6,9%, TR 7,2%, AS 7,6%

M Gössl et al., JACC 2023 in press

Aorteninsuffizienz häufiger als gedacht ...

- ✓ Anatomie
- ✓ Darstellung im TEE (Schnittebene)
- ✓ Morphologie
- ✓ Dimensionen
- ✓ Klappenveränderungen/Vitien
 - ✓ Aortenstenose
 - ✓ Aorteninsuffizienz

Aortenstenose - Ursachen

Common

Calcific disease of a tricuspid valve Calcific disease of a bicuspid valve Rheumatic heart disease

Rare

Homozygous familial hypercholesterolemia Congenital heart disease (other than bicuspid aortic valve) Radiation exposure to the chest Renal failure

Paget disease of bone

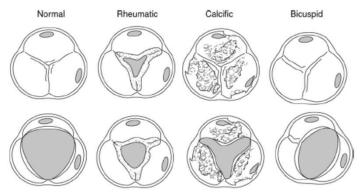
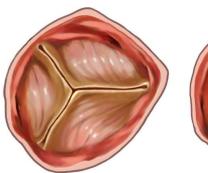
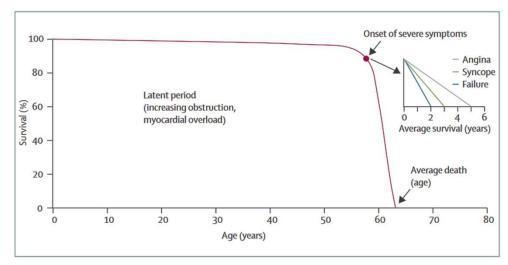
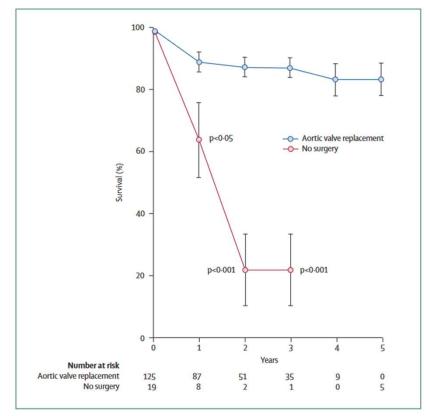



Figure 1 Aortic stenosis aetiology: morphology of calcific AS, bicuspid valve, and rheumatic AS (Adapted from C. Otto, Principles of Echocardiography, 2007).





Legends of Cardiology: Dr Eugene M. Braunwald

AVA decrease by 0,12 cm² Jet velocity increase by 0,32 m/sec Mean gradient increase by 7 mmHg

Braunwald E. Aortic stenosis. Circulation. 1968; 38 (suppl): 61–67

Schwarz F, Baumann P, Manthey J, et al. The effect of aortic valve replacement on survival. Circulation 1982; 66: 1105–10.

Aortenstenose im TE Beurteilung der

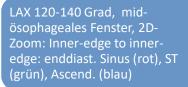
5 Kammerblick, midösophageales Fenster, 2D: Kalzifizierung und Mobilität der Taschen

5 Kammerblick, midösophageales Fenster, 2D und Farbe: Nachweis von Turbulenzen und Regurgitationen

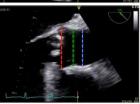
SAX, mid- ösophageale Fenster 40-60 Grad: Klappenmorphologie, Tasche Mobilität und Kalzifikation

SAX, mid- ösophageale Fenster 40-60 Grad: Farbdoppler hilfreich be Morphologiebeurteilung (trikuspide Klappe)

3D Datensatz: Überblick und Optimierung der Bilder für die Planimetrie

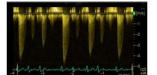


LAX 120-140 Grad, midösophageales Fenster, 2D: Kalzifizierung und Mobilität der Taschen, LV Größe Funktion, LV Masse



SAX, transgasrisch 0 Grad, Farb-Doppler: Nachweis von Turbulenzen oder Aortenregurgitation

LAX, mid- ösophageale Fenster 120-140 Grad, Farb-Doppler: Nachweis von Turbulenzen oder Aortenregurgitation

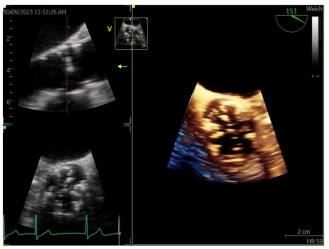

Transgastrisch, cw-Doppler: Doppler des Gradienten (Cave: Winkelfehler)

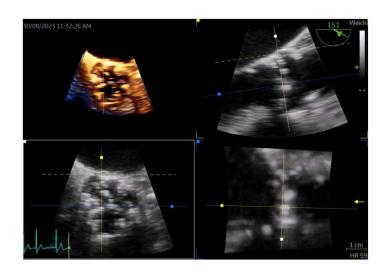
Quantifizierung Aortenstenose - TEE

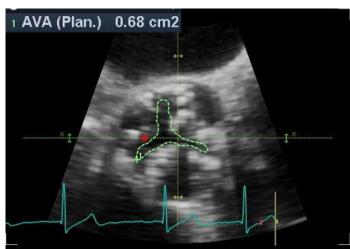
Transeso	Transesophageal Echocardiography					
TEE is ra	TEE is rarely indicated in the assessment of AS because of the accuracy and widespread					
availabil	In	dikationen für die TEE bei Aortenstenose	annot be			
perform	•		oppler			
acquisiti		bzw. Klappengrößenwahl bei TAVI	rta in rare			
cases wh	•	• •	ning is			
much m		Zweifel am transthorakalen Untersuchungsbefund	may be			
poor, inc	•	transösophageale Doppler-Untersuchung, insbesondere von transgastrisch bei transthorakal unzureichender Schallqualität (z. B. beatmete Patient); schwierig!				
	•	V.a. infektiöse Endokarditis	ne 89(6): 349-379			
	•	Beurteilung einer begleitenden Mitralinsuffizienz				

Aortenstenose - Quantifizierung

Table 2 Measures of AS severity obtained by Doppler-echocardiography

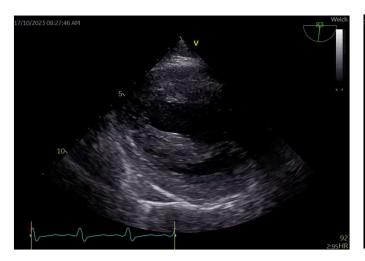

	Units	Formula/method	Cut-off for severe	Concept	Advantages	Limitations
AS jet velocity ¹²⁻¹⁵	m/s	Direct measurement	4.0	Velocity increases as stenosis seventy increases	Direct measurement of velocity. Strongest predictor of clinical outcome	Correct measurement requires parallel alignment of ultrasound beam Row dependent.
Mean gradient ¹²⁻¹⁴	mmHg	$\Delta P = \sum 4v^2/N$	40	Pressure gradient calculated from velocity using the Bernouli equation	Mean gradient is obtained by tracing the velocity curve Units comparable to invasive measurements	Accurate pressure gradients depend on accurate velocity data Row dependent
Continuity equation valve area 16-18	cm ²	$\begin{aligned} \text{AVA} &= (\text{CSA}_{\text{LVOT}} \times \\ \text{VTI}_{\text{LVOT}})/\text{VTI}_{\text{AV}} \end{aligned}$	1.0	Volume flow proximal to and in the stenotic orifice is equal	Measures effective orifice area Feasible in nearly all patients Relatively flow independent	Requires LVOT diameter and flow velocity data, along with aortic velocity. Measurement error more likely
Simplified continuity equation ^{18,19}	cm ²	$\begin{aligned} \text{AVA} &= (\text{CSA}_{\text{LVOT}} \times \\ \text{V}_{\text{LVOT}}) / \text{V}_{\text{AV}} \end{aligned}$	1.0	The ratio of LVOT to aortic velocity is similar to the ratio of VTIs with native aortic valve stenosis	Uses more easily measured velocities instead of VTIs	Less accurate if shape of velocity curves is atypical
Velocity ratio 19,20	None	$VR = \frac{V_{\rm over}}{V_{AV}}$	0.25	Effective AVA expressed as a proportion of the LVOT area	Doppler-only method. No need to measure LVOT size, less variability than continuity equation	Limited longitudinal data. Ignores LVOT size variability beyond patient size dependence
Planimetry of anatomic valve area ^{21,22}	cm ²	TTE, TEE, 3D-echo	1.0	Anatomic (geometric) CSA of the aortic valve orifice as measured by 2D or 3D echo	Useful if Doppler measurements are unavailable	Contraction coefficient (anatomic/effective valve area) may be variable. Difficult with severe valve calcification
LV % stroke work loss ²³	%	$\%SWL = \frac{dP}{dP + SBP} \cdot 100$	25	Work of the LV wasted each systole for flow to cross the aortic valve, expressed as a % of total systolic work	Very easy to measure. Related to outcome in one longitudinal study	Flow-dependent, Limited longitudinal data


JASE Volume 30, ISSUE 4, P372-392

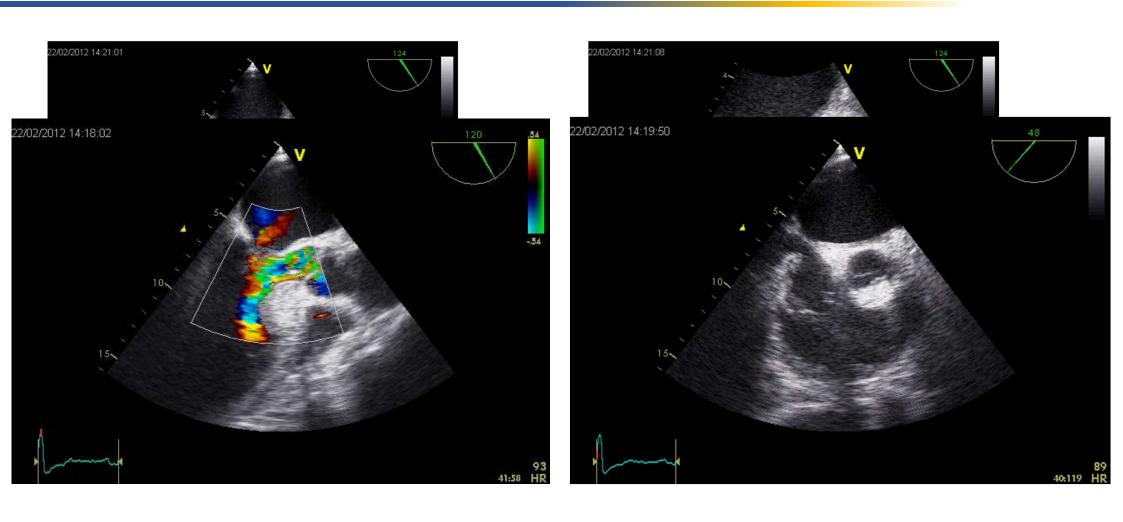


Aortenstenose – Planimetrie (FlexiSlice)

Aortenstenose – Planimetrie (flexiSlice)



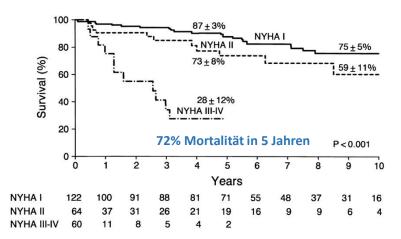
Aortenstenose - Paradoxe Low Flow, Low Gradient


• Ca. 35 % der Patienten mit Aortenstenose

- Definition:
 - AVA < 1,0 cm²
 - P mean < 40 mmHg
 - SVI ≤35 mL/m²
 - EF ≥ 50%

- ✓ Anatomie
- ✓ Darstellung im TEE (Schnittebene)
- ✓ Morphologie
- ✓ Dimensionen
- ✓ Klappenveränderungen/Vitien
 - ✓ Aortenstenose
 - ✓ Aorteninsuffizienz

Aorteninsuffizienz Prognose


TABLE 2. Outcome With Conservative Management of 246 Patients With Severe Aortic Regurgitation

	No. of Events	Event Rates (Observed ± SE)		Linearized Yearly	P vs
Event		5 y	10 y	Rate, %/y	Expected
Death from any cause	43	23±4	34±5	4.7	0.001
Death from cardiac cause	33	18±3	27±5	3.6	•••
Congestive heart failure	54	27±4	47±6	6.2	
Vascular complications*	13	7±2	15±5	1.5	
New atrial fibrillation	11	3±1	8±3	0.9	
New endocarditis	2	•••	4±3	0.2	
Aortic valve surgery	132	50±3	62±4	14.6	
Aortic valve surgery or death	175	61±3	75±3	19.3	
Cardiovascular events†	187	64±3	83±3	20.6	
Mortality in subgroups of patients					
Symptomatic	25	40±7	52±9	9.4	0.001
Asymptomatic	18	12±4	24±5	2.8	0.37
NYHA class					
III or IV	11	72±12		24.6	0.001
II	12	30±8	44±12	6.3	0.02
1	20	13±3	25±5	3.0	0.38
Asymptomatic and EF <55%	8	20±9	47±13	5.8	0.03
Asymptomatic and EF ≥55%	10	10±4	17±5	2.0	0.81
Asymptomatic and LVS/BSA <25 mm/m ²	8	8±3	14±5	1.6	0.91
Asymptomatic and LVS/BSA ≥25 mm/m ²	8	28±11	54±14	7.8	0.004

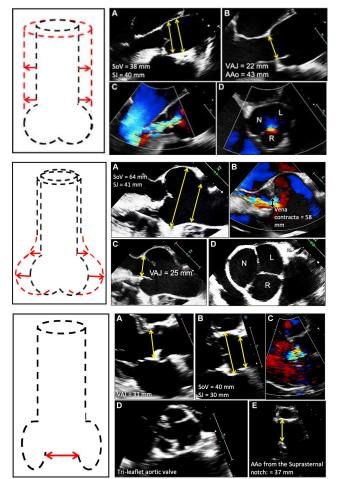
^{*}Aortic dissection and thromboembolism.

[†]Cardiovascular death, surgery, heart failure, vascular complications, new atrial fibrillation, new endocarditis.

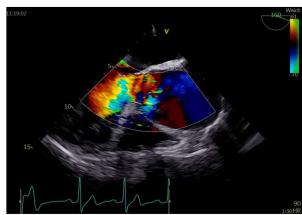
NYHA I, 34% Mortalität in 10 Jahren (pro Jahr 4,7%) NYHA II, 9,4% pro Jahre NYHA III/IV, 24,6% pro Jahr

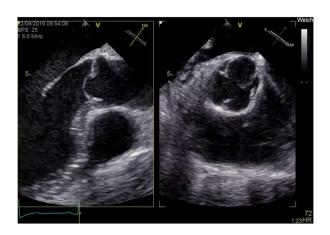
Anatomie der Aorteninsuffizienz

- Proximale Aortendilatation
 - Normalerweise zentrale Regurgitation
- Verdickung oder Retraktion der Taschen
 - Fusion/Raphe der BAV
 - Degenerative Veränderungen
 - · Rheumatische Erkrankung
 - Oft kombiniert mit Aortenstenose
- Zerstörung der Taschen
 - Endokarditis
 - Trauma
- Taschenprolaps
 - Anulus- oder Aortenwurzeldilatation
 - Dissektion
 - Normalerweise exzentrisches Regurgitation

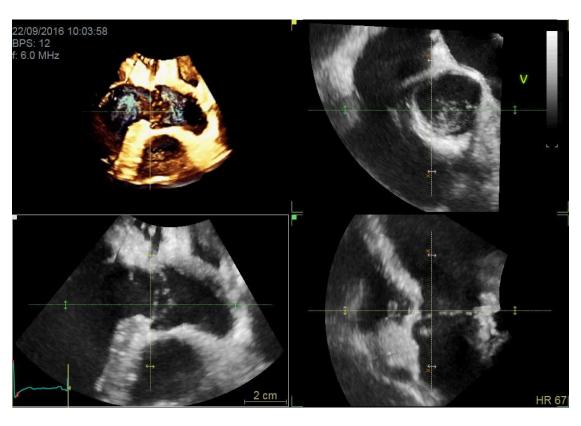


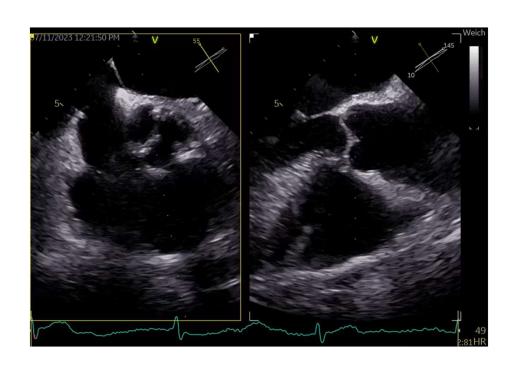
Aorteninsuffizienz - Carpentier Klassifizierung

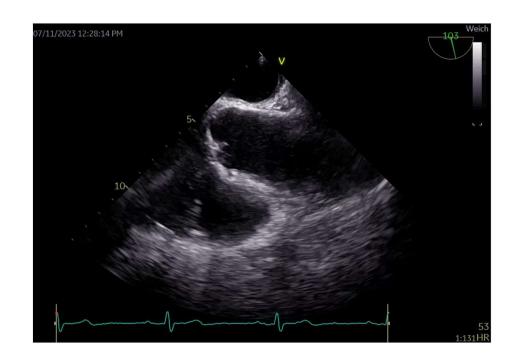

	Typ I ohne Bewegungsstörung der Taschen		Typ II erhöhte Bewegung		Typ III verminderte Bewegung
Mechanismus					
	Dilatation von Aortenring, Sinus und/oder Wurzel	Perforation der Tasche jeglicher Ursache	Total Prolaps der Tasche	Partieller Prolaps	Retraktion mit Verkürzung der Tasche

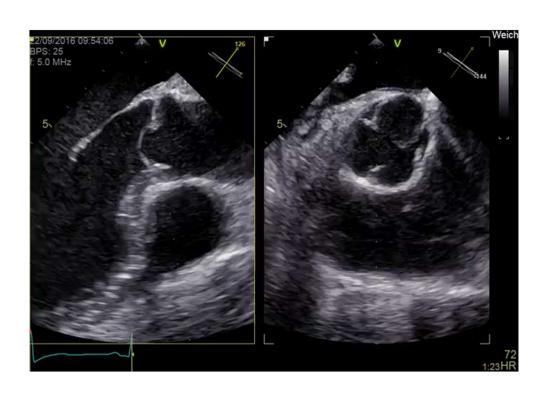


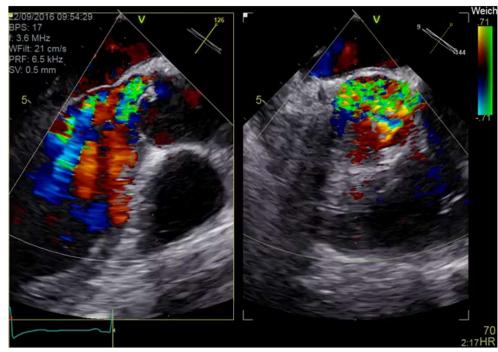
Mechanismus Aortenregurgitation



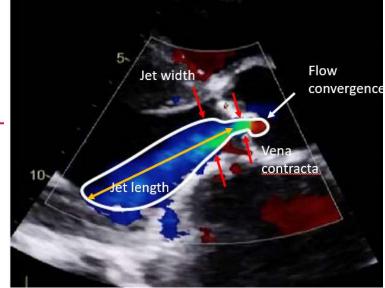

Mechanismus Aorteninsuffizienz

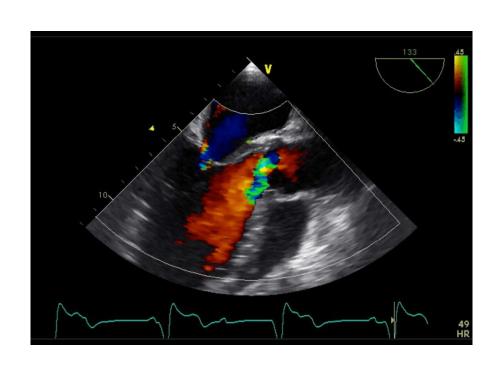



Mechanismus Aorteninsuffizienz



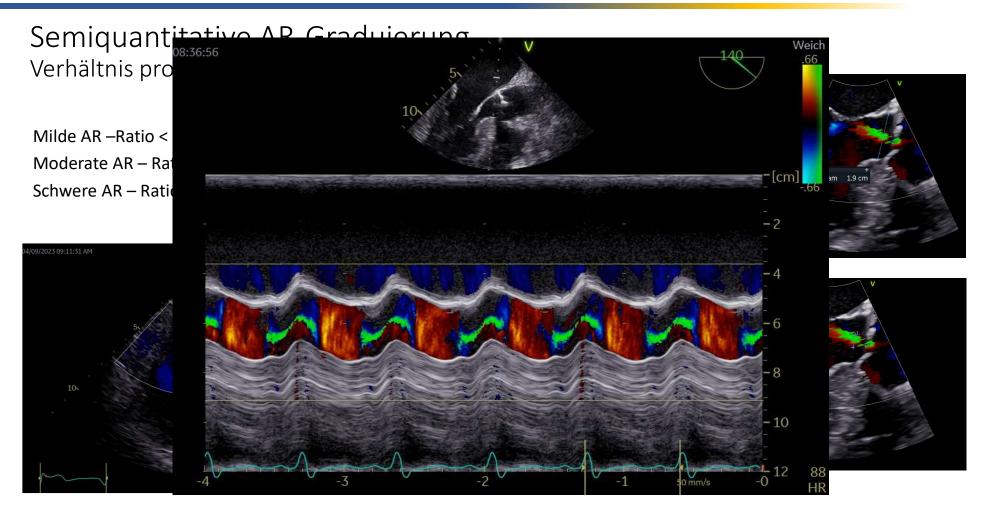
Mechanismus Aorteninsuffizienz

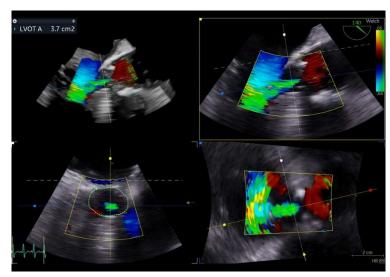




Quantifizierung der Aorteninsuffizienz im Doppler

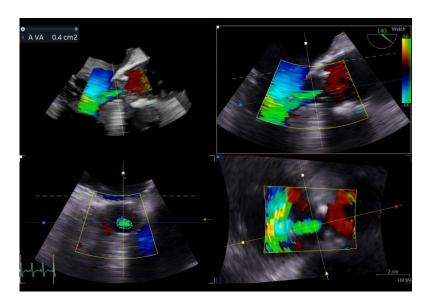
Parameters Mild		Moderate	Severe		
Qualitative					
Aortic valve morphology	Normal/Abnormal	Normal/Abnormal	Abnormal/flail/large coaptation defect		
Colour flow AR jet width ^a	Small in central jets	Intermediate	Large in central jet, variable in eccentric jets		
CW signal of AR jet	Incomplete/faint	Dense	Dense		
Diastolic flow reversal in descending aorta	Brief, protodiastolic flow reversal	Intermediate	Holodiastolic flow reversal (end-diastolic velocity $>$ 20		
Semi-quantitative					
VC width (mm)	<3	Intermediate	>6		
Pressure half-time (ms) ^b	>500	Intermediate	<200		
Quantitative					
EROA (mm²)	<10	10-19; 20-29°	≥30		
R Vol (mL)	<30	30-44: 45-59°	>60		





Semiquantitative AR-Graduierung

RR-ratio proximale AR-Jet-Area in Relation zur LVOT-Area


Fläche des proximalen AR-Jet im Kurzachsenansicht = EROA (Planimetrie der effektive Regurgitationsfläche) Ursache der Klappenläsion in diesem Fall:

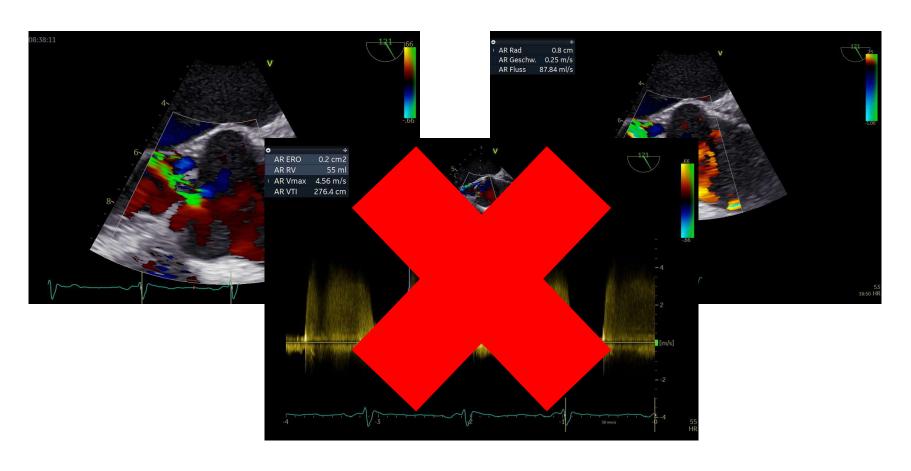
→ Prolaps und Anulusdilatation

LVOT-Area prox. AR-Jet-Area = 3,7 cm² = 0,4 cm² $D_{AR-Jet-A}/D_{LVOT-A}$ = 15%

Milde AR –Ratio < 30% Moderate AR – Ratio = 30-50 % Schwere AR – Ratio > 50%


Dieser Ansatz ist wegen der geringeren intraoperativer Variabilität besser als die Diameter-Ratio

Quantitative AR-Graduierung


PISA Methode (EROA, R Vol)

Quantitative AR-Graduierung:

PISA Methode (EROA, R Vol)

Aorteninsuffizienz

Wann Rekonstruktion, wann operativer Ersatz, wann TAVI?

Rekonstruktion	operativer Ersatz
 trikuspide /bikuspide Aortenklappe mit: Wurzel Dilatation Wurzel Dilatation und Prolaps der Tasche Taschenprolaps (Taschenperforation) (unikuspide Aortenklappe ohne Kalzifikation) 	Jeder Aortenklappe mit: • Kalzifikationen • Retraktionen • mehrere /größere Fenestrationen • Endokarditiden

Dank zunehmender Klappengröße (JenaValve 23 mm, 25 mm und 27 mm) erste erfolgversprechende Ergebnisse der TAVI-Implantation bei Aorteninsuffizienz europäische Kohortenstudie mit 58% (Alter 76,5 ± 9 Jahre)

AKE

Klappentypen

St Jude

Medtronic Hall

Starr-Edwards

Medtronic Mosaic

Carpentier-Edwards Magna

Medtronic Freestyle

Edwards Sapien

CoreValve

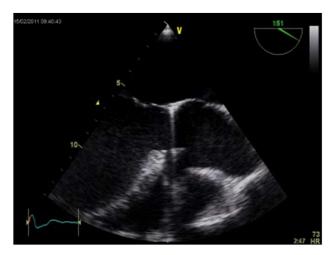
JenaValve

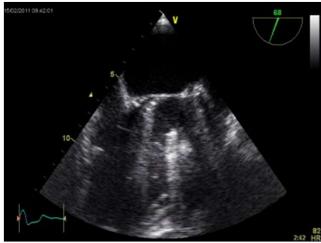
Mechanische Klappen

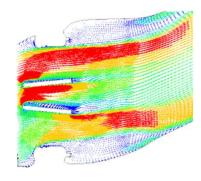
- Doppelflügelprothesen
 - St. Jude Medical, Carbomedics, ATS Medical, Sorin Bicarbon
- Kippscheiben
 - Björk-Shiley, Medtronic-Hall, Omnicarbon
- Kugelprothesen
 - Starr-Edwards
- Bioprothesen
 - Schweine-Klappen
 - Hancock Porcine, Carpentier-Edwards, Medtronic Mosaik
 - Rinderperikard
 - Carpentier Edwards Pericardial, Ionescu-Shiley, Mitroflow
 - Gerüstfreie Bioprothesen
 - Medtronic Freestyle, Edwards PRIMA Stentless, Biocor Stentless
- Perkutane Bioprothesen
 - CoreValve, Edwards Sapien, JenaValve

Beurteilung der Prothesenfunktion

- Implantation
 - Datum,
 - Art und Größe der Klappe
- 2D Echo
 - Flügelbeweglichkeit
 - Verkalkungen
 - Zusatzstrukturen
- Doppler
 - Kontur des Flussprofils
 - Maximale Geschwindigkeit und Gradient
 - Mittlerer Gradient
 - PHT bei MV und TV
 - Regurgitationen
 - Ausdehnung
 - Lokalisation
- Andere Echo-Befunde
 - Größe LV und RV, Hypertrophie
 - Größe LA und RA
 - Begleitende Vitien
 - Pulmonale Hypertonie



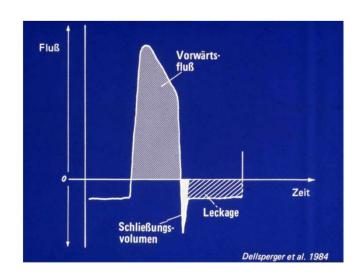


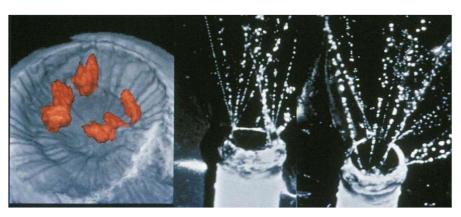


Doppelflügelprothese

Flussprofil

http://bme.sunysb.edu/people/faculty/d_bluestein.html


- Öffnungswinkel 75-90°
- Durchstrom wird wenig behindert
 - 3 Öffnungen: eine zentral zwischen den Flügeln, 2 große durch die Flügel
- normale transversale Regurgitation
 - Notwendig zum Klappenschluss
 - Verhindungerung von Thromben



Doppelflügelprothese

transvalvuläre Regurgitation

- normale transvalvuläre Regurgitation bei mechanischen Prothesen
- pathologische transversale Regurgitation
 - im pw-Doppler während der gesamten Schließungsphase nachweisbar
 - nicht der normalen Gestalt und dem erwartetem Ausmaß entsprechend

SJM: Mitsystol. Standbilder im vgl. zu invitro tests (Flachskampf et al.)

Wertigkeit der TEE bei Klappenprothese

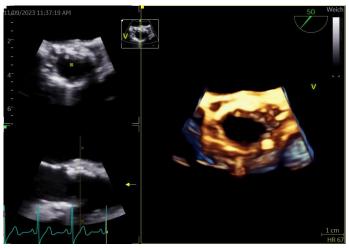
TEE der TTE eindeutig überlegen

- Mitralinsuffizienz (qualitativ und quantitativ; Ursprung)
- Klappenspiel bei mechanischen Prothesen Mitralposition
- Morphologie von Bioprothesen

TEE prinzipiell der TTE überlegen, bei entsprechenden Fragestellungen TEE indiziert

- Thromben
- Vegetationen [TEE: Sensitivität 86%-94%, und Spezifität 88%-100%]
- Abszesse [TEE: Sensitivität 87% und Spezifität 95%]
- Fistulöse Kommunikationen

TEE prinzipell der TTE nicht überlegen, nur bei schlechter TTE-Qualität indiziert


• Aorteninsuffizienz (bezüglich Mechanismus und Lokalisation ggf. TEE überlegen)

TEE liefert in der Regel keine Beantwortung

• Klappenspiel bei Aortenprothesen

